Тепловой узел что это

Что такое тепловой узел и как он устроен

тепловой узел что это

Приветствую всех, кто читает мой блог! Сегодня я хочу предложить вам еще одну статью, которая посвящена отоплению. В этой статье я расскажу вам о странном месте в подвале вашего дома, которое называется тепловой пункт (или тепловой узел). Статья имеет своей целью дать вам общее представление о том, что такое тепловой узел, как он работает и зачем нужен. Разбираться в этих вопросах начнем с самого фундаментального из них.

Зачем нужен тепловой узел?

Тепловой пункт находится на вводе теплотрассы в дом. Главное его назначение — изменение параметров теплоносителя. Если говорить понятнее, то тепловой узел снижает температуру и давление теплоносителя перед тем как он попадет в ваш радиатор или конвектор.

Нужно это не только для того, чтобы вы не обожглись от прикосновения к прибору отопления, но и для продления срока службы всего оборудования системы отопления. Особенно это важно, если внутри дома отопление разведено при помощи полипропиленовых или металлопластиковых труб.

Существуют регламентированные режимы работы тепловых узлов:

Эти цифры показывают максимальную и минимальную температуру теплоносителя в теплотрассе.

Также, по современным требованием на каждом тепловом узле должен быть установлен прибор учета тепла. Теперь перейдем к устройству тепловых узлов.

Как устроен тепловой узел?

Вообще, техническое устройство каждого теплового пункта проектируется отдельно в зависимости от конкретных требований заказчика. Существует несколько основных схем исполнения тепловых пунктов. Давайте рассмотрим их по очереди.

Тепловой узел на основе элеватора

Схема теплового пункта на основе элеваторного узла является наиболее простой и дешевой. Главный ее недостаток — невозможность регулировать температуру теплоносителя в трубах. Это вызывает неудобства у конечного потребителя и большой перерасход тепловой энергии в случае оттепелей во время отопительного сезона. Давайте посмотрим ниже на рисунок и разберемся в том, как работает эта схема:

Кроме того, что указано выше, в составе теплового узла может быть редуктор понижения давления. Он устанавливается на подаче перед элеватором.

Элеватор является главной деталью этой схемы, в которой осуществляется подмешивание остывшего теплоносителя из «обратки» к горячему теплоносителю из «подачи». Принцип работы элеватора основан на создании разряжения на его выходе.

В результате этого разряжения, давление теплоносителя в элеваторе оказывается меньше, чем давление теплоносителя в «обратке» и происходит смешение.

Тепловой узел на основе теплообменника

Тепловой пункт, подключенный через специальный теплообменник позволяет разделять теплоноситель из теплотрассы от теплоносителя внутри дома. Разделение теплоносителей позволяет производить его подготовку при помощи специальных присадок и фильтрации.

 При такой схеме появляются широкие возможности в регулировании давления и температуры теплоносителя внутри дома. Это позволяет снизить затраты на отопление. Для того, чтобы иметь наглядное представление о такой конструкции посмотрите ниже на рисунок.

Подмешивание теплоносителя в таких системах делается при помощи термостатических клапанов. В таких системах отопления в принципе можно применять алюминиевые радиаторы отопления, но долго они прослужат только при хорошем качестве теплоносителя.

Если PH теплоносителя будет выходить за рамки одобренные производителем, то срок службы алюминиевых радиаторов может сильно сократиться.

Качество теплоносителя вы контролировать не можете, поэтому лучше перестраховаться и установить биметаллические или чугунные радиаторы.

ГВС может быть подключена подобным образом через теплообменник. Это дает такие же преимущества по части регулирования температуры и давления горячей воды. Стоит сказать, что недобросовестные управляющие компании могут обманывать потребителей при помощи занижения температуры горячей воды на пару градусов. Для потребителя это почти не заметно, но в масштабах дома позволяет экономить десятки тысяч рублей в месяц.

Итоги статьи

В этой статье я кратко рассказал вам о тепловых узлах. Это, конечно, не полная информация по этой очень обширной теме, но в качестве начальных знаний вполне подойдет.

Могу сказать, что тепловые узлы в наше время устанавливают не только на многоквартирные, но и на частные дома, если они подключаются к центральному отоплению. Такое решение требует первоначальных затрат, но в последующем увеличит комфортность проживания в частном доме.

На этом все, пишите свои вопросы в комментариях и пользуйтесь кнопками социальных сетей, чтобы поделиться статьей с друзьями. До свидания!

Источник: https://znayteplo.ru/otoplenie/chto-takoe-teplovoj-uzel-i-kak-on-ustroen/

Зачем устанавливать автоматизированный узел управления отоплением

тепловой узел что это

Автоматизированный узел управления отоплением поможет вам решить две задачи:

  • обеспечить оптимальную температуру внутри здания и
  • сократить затраты на отопление.

В нашем обзоре узлов управления системой отопления вы узнаете:

Автоматизированный узел управления отоплением

Как это работает

Принцип действия узла управления системой отопления очень простой:

Когда температура снаружи понижается, например до -20 °С узел управления отоплением подает больше тепла в помещения, поддерживая, тем самым, температуру внутри помещений на необходимом уровне, например +20 °С.

И наоборот.

Когда температура снаружи повышается, например до +5 °С, узел погодного регулирования, как его еще называют, подает меньше тепла в помещения.

Тем самым, потребления тепла сокращается, а температура в помещениях остается на необходимом нам уровне, например, +20 °С и не возрастает до +28 °С, как это часто бывает во время резкого потепления.

Температура не возрастает до +28 °С

А если по научному, то узел погодного регулирования предназначен для обеспечения и поддержания требуемой температуры теплоносителя в подающем трубопроводе, в зависимости от температуры наружного воздуха.

Основные плюсы установки автоматизированного узла управления отоплением

Как мы уже говорили, целью данного энергосберегающего мероприятия является оптимизация потребления тепловой энергии в здании, а именно:

  • существенное снижением затрат на теплоснабжение зданий и сооружений,
  • повышении качества и надежности теплоснабжения,
  • автоматическое регулирование подачи тепла в здания и сооружения,
  • возможность дистанционного контроля параметров теплоносителя и режимов работы теплоснабжающего оборудования,
  • возможность, без дополнительных затрат, перенастроить работу системы отопления, например, после утепления фасадов, замены окон, ремонта здания,
  • автоматизация системы учета потребления тепловой энергии.

Как показывает практика, автоматизированный узел управления (АУУ) позволяет экономить около 25% – 37 % тепловой энергии и обеспечивать комфортные условия проживания в каждом помещении.

Когда целесообразно устанавливать АУУ — примеры и расчет срока окупаемости

Давайте рассмотрим 3 примера установки узла учета и рассчитаем срок окупаемости данного мероприятия.

Все примеры из реальной жизни и базируются на энергетических обследованиях, которые мы провели.

И так, у нас три административных здания (офисы):

  • Здание 1 площадью 1300 м2
  • Здание 2 площадью 4800 м2
  • Здание 3 площадью 18500 м2

Все три здания находятся в Москве.

Вот основные итоги установки узла управления системы отопления:

Площадь м2 Общий расход тепла за отопительный период до установки АУУ Общий расход тепла за отопительный период после установки АУУ Сокращение потребления тепла Гкал Стоимость Гкал тыс. руб. (2018 г.) Экономия за отопительный период тыс. руб.
Здание №1 1 300 340 266 74 2,0 148
Здание №2 4 800 550 418 132 2,0 264
Здание №3 18 500 4 400 3 720 680 2,0 1 360

Как видно из таблицы, установка узла управления отоплением помогла сократить потребление тепла за отопительный период на:

  • Здание №1 – 74 Гкал,
  • Здание №2  – 132 Гкал,
  • Здание №3 – 680 Гкал.

Столь существенная разница в сокращении потребления обусловлена, в основном:

  • размером зданий (площадь и этажность)
  • количеством часов эксплуатации,
  • назначением.

В следующей таблице указаны:

  • экономия тепла за отопительный период (из расчета стоимость 2 тыс. руб. за Гкал)
  • стоимость установки и монтажа узла управления отоплением и
  • срок окупаемости.
Экономия за отопительный период тыс. руб. Стоимость АУУ (оборудование и монтаж) Простой срок окупаемости лет
Здание №1 148 1 556 10,5
Здание №2 264 1 856 7,0
Здание  №3 1 360 2 000 1,5

Основной вывод, который мы можем сделать из расчета срока окупаемости АУУ

Автоматизированный узел управления отоплением целесообразно устанавливать в зданиях со значительным потреблением тепловой энергии и в зданиях с перетопами.

В небольших зданиях и зданиях с малым потреблением тепловой энергии автоматизированный узел управления отоплением будет окупаться очень долго или не окупиться никогда.

В небольших зданиях более целесообразно произвести ревизию элеваторных узлов или их установку, а также установить систему балансировочных клапанов на главных стояках системы отопления.

Узел управления системы отопления

Почему более выгодно устанавливать АУУ в зданиях с большим потреблением тепла?

Узел управления отопления стоит примерно одинаково для больших и малых зданий (разница стоимости оборудования и монтажа – 20%-30%).

В то же время, в здании больших размеров можно сэкономить в 5-10 раз больше тепловой энергии, чем в здании малого размера.

В нашем примере мы видим:

  • Узел управления отоплением окупается за 10,5 лет в здании №1, площадью 1 300 м2 и потреблением тепла 340 Гкал до установки АУУ.
  • Такой же узел окупается за 1,5 лет в здании №3, площадью 18 500 м2 и потреблением тепла до установки АУУ 4 400 Гкал.

Наш анализ и расчет не являются универсальными

Они лишь дают вам основное понимание, в каких зданиях целесообразней устанавливать автоматизированные узлы управления отопления.

Мы рекомендуем делать расчет целесообразности и срока окупаемости узла управления отоплением индивидуально для каждого здания, исходя из конкретных обстоятельств и условий.

Как происходит установка автоматизированного узла управления системой отопления

Принципиального изменения схемы теплоснабжения здания при установке автоматизированного узла управления системой отопления (АУУ) не происходит.

В отличие от элеваторных узлов, устанавливаемых на каждой секции дома, АУУ монтируется, как правило, один на здание.

Присоединение узла управления выполняется после узла учета тепловой энергии.

Узел погодного регулирования включает в себя следующие элементы:

  • управляющий элемент,
  • регулирующий клапан с исполнительным механизмом,
  • циркуляционный насос,
  • датчики температуры наружного воздуха,
  • датчики температуры в помещении.

Управляющий элемент узла погодного регулирования позволяет вручную менять настройки, определяющие режим работы системы отопления, и позволяющие поддерживать различную температуру в здании в различное время.

Например, в административных зданиях в выходные и праздничные дни можно снижать температуру воздуха внутри до +12 °С.

В рабочие дни температуру можно повышать до +18 °С.

Схема и общий вид автоматизированного узла погодного регулирования представлены на рисунках ниже.

В схеме предусмотрено:

  • автоматическое переключение между основным и резервным насосом при отказе одного из насосов,
  • возможность введения гибкого графика регулирования температуры воздуха в помещениях с учётом ночного времени, выходных и праздничных дней на весь отопительный сезон,
  • обязательный контроль температуры обратного теплоносителя,
  • поддержание температурного графика.

Регулирование температуры системы отопления происходит путем изменения пропускной способности клапана и подмешивания сетевой воды при помощи циркуляционного насоса.

В процессе работы контроллер:

  • периодически опрашивает датчики температуры теплоносителя, датчик воздуха внутри помещения (если он есть) и датчик наружного воздуха,
  • обрабатывает полученную информацию и
  • формирует управляющие сигналы, дающие команду исполнительному механизму на открытие или закрытие.

Управляющее воздействие от контроллера изменяет величину открытия проходного сечения регулирующего клапана.

При отсутствии датчика воздуха внутри помещения главным приоритетом регулирования является поддержание температурного графика.

Эффективное применение автоматизированных узлов учета

Применение АУУ наиболее эффективно:

  • в зданиях большого размера с существенным теплопотреблением,
  • в домах присоединенными к городским тепловым сетям,
  • в зданиях с недостаточным перепадом давления в системе центрального отопления и с обязательной установкой насосов центрального отопления,
  • в зданиях с децентрализованным горячим водоснабжением и центральным отоплением.

Выводы

И так, автоматизированный узел управления отоплением позволит вам:

1. Использовать на нужды отопления только необходимую для этого тепловую нагрузку.

При этом, в случае ее избытка (в периоды «перетопа»), уменьшать подачу теплоносителя вплоть до полной остановки расхода с обеспечением циркуляции горячей воды во внутреннем контуре за счет насоса.

В эти периоды УУТЭ будет фиксировать отсутствие внешнего теплопотребления.

2. Выровнять температуру нагрева радиаторов на всех этажах здания при любой схеме разводки трубопроводов за счет принудительной циркуляции.

3. Обеспечить более равномерный прогрев стояков отопления за счет сохранения насосом требуемого уровня циркуляции при проведении постоянной регулировки.

4. Поддерживать более высокую температуру в помещениях при температуре наружного воздуха ниже расчетного минимума и не выдерживании требуемого при этом температурного графика теплоисточником за счет увеличения расхода на внутреннем контуре.

Вас может заинтересовать:

Источник: https://energo-audit.com/auu

Что такое тепловой узел?

тепловой узел что это

Тепловой узел — это система элементов, созданных для учета теплоэнергии и ее рационального использования.

Все приборы, входящие узел учета тепловой энергии, выполняют одну или несколько задач. Среди них — сбор информации об объеме и подаваемого тепла, измерение давления в теплоносителе, температуры жидкости, и т. д.

Узел учета тепловой энергии включает:

— Запорную арматуру. Используется для принудительного отключения или приостановки теплоносителя на конкретном участке трубы или радиатора. Как правило, это различные задвижки и краны. — Теплосчетчик. Является основным элементом, монтируется на границе балансовой принадлежности тепловых сетей (ввод тепла в дом) и  предназначен для измерения фактически потребленной и переданной энергии. Состоит из расходометра. Датчиков температуры — Грязевик.

 Используется для защиты элементов системы от грязи, поступающей вместе с теплоносителем, и вычислителя. — Термопреобразователь. Измеряет температуру. Устанавливается либо в поток, либо в защитную гильзу с маслом. Рекомендуется располагать непосредственно рядом с узлом учета. — Расходометр. Играет роль преобразователя расхода.

— Термодатчик.

Устанавливается на обратном трубопроводе рядом с датчиками расхода и запорными элементами, что дает возможность измерять как температуру жидкости, так и объемы ее потребления.

Схемы тепловых пунктов:

— Параллельное одноступенчатое подключение горячей воды. Считается одной из самых простых и недорогих схем. Теплообменник для нагрева один и установлен параллельно системе отопления. Сначала жидкость поступает в подогреватель, откуда подается в теплопровод. Основной минус такого подключение — неэкономичности из-за большого расхода сетевой воды.

— Последовательное двухступенчатое подключение горячей воды. Для подогрева здесь применяются  теплообменники двух ступеней. Первая из них связана с обратным трубопроводом, где холодная вода нагревается до 40 градусов, а вторая с подающим, где жидкость доходит до нужной температуры. В отличие от предыдущей схемы расходы теплоносителя здесь ниже, так как специальной ее подачи не требуется. Минус — требуется установка температурного регулятора.

— Двухступенчатая смешанная схема. Часто используется для подключения к системе ГВС общественных зданий. Может применяться как при нормальной, так и повышенной температуре сетевой воды. Главное отличие в том, что подключение  здесь последовательное, а не параллельное. Принцип работы как во второй схеме. Однако в этом случае требуется дополнительный расход воды для подогревателей.

Монтаж теплового узла

Что касается установки узла учета, все начинается с обследования объекта и разработки проектных документов, включающие точные расчеты и подбор подходящего оборудования. Монтаж же выполняется только после согласования проекта у организации — поставщика теплоэнергии. Акт о допуске узла учета к эксплуатации также подписывают представители теплоснабжающей компании.

Помните, что работа теплового узла будет запрещена, если: — имеются врезки в трубопроводы, не отраженные в проекте; — счетчик работает с отклонениями от норм точности; — на счетчике и других элементах есть механические повреждения;

— имеется нарушение пломб и др.

Источник: https://anvitek.one/blog/detail/chto-takoe-teplovoy-uzel/

Модернизация тепловых узлов

ОПРЕДЕЛЕНИЕ

Основные задачи модернизации – организация учета теплопотребления абонентом и сокращение потребления тепловой энергии при улучшении уровня теплового комфорта в обслуживаемых помещениях.

ЭТО ИНТЕРЕСНО:  Какая толщина стяжки должна быть для теплых полов

Для этого, как минимум, на абонентском вводе устанавливают прибор учета и автоматический регулятор теплового потока, корректирующий отпуск теплоты по погодным условиям. Такое применение оборудования называют местным либо абонентским автоматическим регулированием.

При этом не осуществляют изменений конструктивного характера в системе отопления, но предусматривают эту возможность в будущем.

Индивидуальные тепловые пункты (ИТП) — для присоединения систем отопления, вентиляции, горячего водоснабжения и технологических теплоиспользующих установок одного здания или его части;

Центральные тепловые пункты (ЦТП) — для присоединения систем отопления, вентиляции, горячего водоснабжения и технологических теплоиспользующих установок двух зданий или более.

Узлы подключения системы к источнику тепловой энергии бывают двух типов:

  1. Одноконтурные;
  2. Двухконтурные.

Одноконтурный тепловой пункт

Одноконтурный тепловой пункт – это наиболее распространенный тип подключения потребителя к источнику тепловой энергии. В этом случае для системы отопления дома используется непосредственное соединение с магистралью горячего водоснабжения.

Одноконтурный тепловой пункт имеет одну характерную деталь – его схема предусматривает трубопровод, соединяющий прямую и обратную магистрали, который называется элеватор. Назначение элеватора в системе отопления стоит рассмотреть подробнее.

У котельных системы отопления есть три стандартных режима работы, различающихся температурой теплоносителя (прямого/обратного):

  • 150/70;
  • 130/70;
  • 90–95/70.

Использование перегретого пара в качестве теплоносителя для системы отопления жилого дома не допускается. Поэтому, если по погодным условиям котельная поставляет горячую воду температурой в 150°C, ее требуется охладить перед подачей в стояки отопления жилого дома. Для этого используется элеватор, через который «обратка» попадает в прямую магистраль.

Элеватор открывается ручным или электрическим (автоматическим) приводом. В его магистраль может быть включен дополнительный циркуляционный насос, но обычно это устройство делают особой формы – с участком резкого сужения магистрали, после которой идет конусообразное расширение. За счет этого оно работает как инжекторный насос, закачивая воду из обратки.

Двухконтурный тепловой пункт

В этом случае теплоносители двух контуров системы не смешиваются. Для передачи тепла от одного контура другому используется теплообменник, обычно пластинчатый. Схема двухконтурного теплового пункта приведена ниже.

Пластинчатый теплообменник – это устройство, состоящее из ряда полых пластин, по одним из которых прокачивается нагревающая жидкость, а по другим – нагреваемая. У них очень высокий коэффициент полезного действия, они надежны и неприхотливы. Количество отбираемого тепла регулируется изменением числа взаимодействующих друг с другом пластин, поэтому забор охлажденной воды из обратной магистрали не требуется.

Варианты модернизации ИТП

Альтернативным вариантом модернизации тепловых пунктов по отношении к рассмотренным малобюджетным предложениям является внедрение полноценных систем автоматического погодного регулирования (далее — САПР) на основе апробированных проектных решений, надежной элементной базы, микропроцессорного управления, отлаженного программного обеспечения и наличия специалистов для обслуживания действующего оборудования. ИТП, оборудованный САПР, далее будем называть автоматизированным ИТП (АИТП).

АИТП на основе двухходового клапана.

Условные обозначения на рисунке:

Р1- манометр прямопоказывающий;

Т1-Т5- кран шаровый;

К1 — двухвходовой регулирующий клапан;

РС — регулятор перепада давления;

М1 -циркуляционный насос.

В исходном состоянии двухходовой регулирующий клапан находится в состоянии, соответствующем температуре наружного воздуха (Тн) и настройкам контроллера. Теплоноситель из теплосети поступает в систему отопления МКД. Температура теплоносителя (смеси) после линии подмеса (Т5) измеряется внутренним температурным датчиком.

Пересчет необходимой температуры смеси осуществляется контроллером на основе сведений о наружной температуре. На этапе пуско-наладки в контроллер вводятся необходимые настроечные данные, на основании которых рассчитывается температура смеси в зависимости от температуры наружного воздуха.

Циркуляция теплоносителя в системе обеспечивается циркуляционным насосом М1.

По всем МКД, в которых установлено оборудование АИТП, были зарегистрированы значения годового потребления тепловой энергии на нужды отопления ниже нормативного. Соседние МКД без АИТП в основном имели значения годового потребления выше нормативного. Среднее значение экономии или перерасхода составляет -25% для МКД с АИТП и +5% для элеваторных ИТП.

Смесительные узлы автоматического погодного регулирования СУАПР.

СУАПР монтируется вместо водоструйных элеваторов соответствующего типоразмера

В настоящее время хорошо зарекомендовал себя еще один подход к модернизации ИТП, который позволяет в полной мере использовать технические преимущества АИТП и, в то же время, приводит к значительному сокращению затрат при выполнении монтажных и пуско-наладочных работ.

СУАПР представляет собой компактный автоматизированный смесительный узел, который обеспечивает управление параметрами теплоносителя в системе отопления в зависимости от температуры наружного воздуха и условий эксплуатации здания.

Он предназначен для автоматического регулирования параметров теплоносителя (температуры), поступающего в систему отопления. Управление параметрами выполняется регулятором (контроллером), который в соответствии с заданным алгоритмом и температурой наружного воздуха формирует управляющие воздействия на регулирующий клапан и насос.

При понижении температуры наружного воздуха температура теплоносителя, поступающего в систему отопления, увеличивается и наоборот.

Конструкция СУАПР обеспечивает замену элеваторов водоструйных №1-№7 конструкции ВТИ Мосэнерго.

СУАПР представляет собой блок заводской готовности, полностью собранный и готовый к установке на объекте, который обеспечивает:

насосную циркуляцию теплоносителя в системе отопления;

контроль выполнения требуемого температурного графика как подающего, так и обратного теплоносителя (предотвращение перетопов и переохлаждения зданий);

визуальный контроль параметров температуры на входе и выходе системы отопления.

СУАПР монтируется вместо водоструйных элеваторов соответствующего типоразмера.

На основании приведенных материалов можно сделать следующие выводы:

Одной из основных причин сверхнормативного потребления тепловой энергии на нужды отопления является несоответствие режимов работы теплового пункта договорной тепловой нагрузке.

Эксплуатируемые ИТП с использованием элеваторных узлов смешивания морально и технологически устарели и не могут обеспечить рациональное и эффективное потребление тепловой энергии.

Попытки внедрения автоматизированных схем управления параметрами теплоносителя в элеваторных узлах смешивания не приводят к эффективному погодному регулированию.

Наиболее эффективным решением рационального потребления тепловой энергии являются полноценные АИТП с погодным регулированием. Но их внедрение в настоящий момент сдерживается достаточно высокими ценовыми показателями.

Наиболее рациональным решением, сочетающим технические преимущества АИТП и сравнительно невысокую стоимость внедрения, является использование СУАПР.

Функции СУАПР аналогичны функциям полноценной системы автоматического погодного регулирования. В свою очередь, использование данных изделий позволяет резко сократить затраты на внедрение. Это вызвано тем, что при невысокой стоимости закупаемого оборудования потребитель еще получает весьма существенную экономию средств при проведении монтажа системы, так как минимизированы или полностью отсутствуют сварочные работы.

ОСНОВНЫЕ ЗАКОНОДАТЕЛЬНЫЕ АКТЫ

— Федеральный закон от 27.07.2010 N 190-ФЗ «О теплоснабжении»;

— СП 41-101-95 «Проектирование тепловых пунктов»;

— СТО 70238424.27.060.003-2008 Тепловые пункты тепловых сетей. Условия создания. Нормы и требования;

— СП 334.1325800.2017 Квартирные тепловые пункты в многоквартирных жилых домах. Правила проектирования;

Источник: http://electronsrv.ru/modernizatsiya-teplovyh-uzlov/

Элеватор что это? Элеваторный узел отопления – устройство

На вопрос элеватор, что это такое мне приходится отвечать постоянно, встречаясь как с жильцами, так и с представителями управляющих компаний обслуживающих тепловые пункты. Причем о верном предназначении элеватора не знают не только слесаря, но и их прямые руководители.

Очень часто приходится слушать упреки: «Что Вы нам ставите, там такая маленькая дырочка, разве нам хватит на всех тепла?» И идет война, только уходят монтажники, маленькая дырочка под названием сопло выбрасывается, на перемычке устанавливается заглушка или как ее еще называют шибер. Кстати, хорошо если устанавливается, а то и забывают или не знают, как устроен элеватор.

Давайте с вами проведем маленький ликбез о том, для чего ставят элеватор, как он устроен, и что нам дает установка элеватора

Говоря простым языком, элеватор это водоструйный или инжекционный насос (непонятное слово инжекционный разберем чуть ниже), который за счет перепада давления на вводе в ваш тепловой пункт увеличивает прокачку во внутренней системе отопления квартир. Проще говоря, взяли из тепловой сети 5 кубометров воды, а в систему отопления квартир подали 12,5 кубометров. Сразу же возникает вопрос, каким образом и за счет чего такое увеличение стало возможным. Где мы потеряли и что приобрели?

Начнем с того – за счет чего такое увеличение объема прокачиваемой воды стало возможным? Если у вас в тепловом пункте проектом предусмотрен элеватор, значит, ваша котельная или ТЭЦ подает к ИТП жилого дома перегретую воду. Температура этой воды может достигать 150 градусов Цельсия при температуре на улице минус 30 градусов и ниже.

Сразу же отвечаю на вопрос тех, кто помнит из школы, что вода кипит, читай, превращается в пар, при 100 градусах Цельсия. Напоминаю — кипит в открытой посуде без избыточного давления. Но в трубах вода движется под значительным давлением, поэтому и не вскипает.

Но воду с такой температурой в ваши батареи подавать нельзя, большая вероятность получить ожоги, как от прямого прикосновения к трубам и отопительным приборам, так и при разрыве батарей отопления, чугун не любит перепадов температуры и лопается как стеклянный стакан или банка, если в нее резко налить горячую воду.

К тому же сейчас повсеместно используются полипропиленовые трубы, в простонародье называемые пластмассовыми.

  У полипропиленовых труб разрешенная температура до 90-95 градусов Цельсия, и при этом, при температуре 90 гр. Цельсия большинство труб служит не более года.

Вот мы и подошли к ответу на вопрос для чего служит элеваторный узел отопления

Элеваторный узел отопления при помощи того самого злополучного элеватора перегретую воду, подаваемую от котельной, охлаждает до расчетной температуры и подает ее в отопительные приборы квартир.

Охлаждение воды происходит при смешении в элеваторном устройстве, горячей воды из подающего трубопровода и остывшей воды  из обратного трубопровода здания.

Следовательно, мы с вами экономим, берем немного горячей воды из тепловой сети, разбавляем водой из обратного трубопровода,  за тепло в ней мы уже заплатили и повторно подаем в свои квартиры.

Да мы теряем температуру, но элеватор заставляет воду в батареях отопления двигаться быстрее, в результате разница в температуре между теми, кто первыми в доме получает тепло и последними квартирами на стояках уменьшается. На лицо справедливость.

А если бы не было элеватора, или умельцы выбросили сопло, у первых по ходу теплоносителя жильцов батареи были бы очень горячие, они задыхались бы от жары, открывали окна и балконные двери, а владельцы последних, а особенно угловых квартир мерзли и ругали тепловые сети! Большинство из вас скажет, так у нас и происходит.

Ну а теперь для особо любознательных читателей разберем, как устроен водоструйный элеватор и элеваторный узел отопления, за счет чего он работает, какой режим должен быть в тепловой сети для его уверенной работы, и, наконец, какие разновидности элеваторов выпускает промышленность. Обо всем этом читайте на следующей странице.

Что еще почитать по теме:

Источник: http://kip-mtr.ru/elevator-chto-eto/

Узел управления тепловой энергии. Узлы управления местными системами отопления

Доля расходов на отопление является преобладающей в коммунальных платежах на всей территории нашей страны. При этом в северных районах, а также там, где в качестве топлива используется привозной мазут, тепловая энергия стоит особенно дорого. По этой причине вопрос экономного потребления и разумного расходования тепловой энергии является на сегодняшний день одним из самых актуальных. Как известно, экономия начинается с учета.

Сегодня практически повсеместно установлены счетчики тепловой энергии, поступающей в многоквартирный дом. Статистические данные свидетельствуют, что эта простая мера позволила сократить расходы на отопление на 20, а порой и на 30%. Но этого недостаточно, нужно двигаться дальше и вектор этого движения должен быть направлен в сторону поквартирного учета тепла и снижения потребления энергии в зависимости от уменьшения потребностей в ней.

Для этого потребуется провести реконструкцию элеваторного ввода и установить узел управления системой обеспечения тепла с автоматическим регулированием его работы в зависимости от температуры наружного воздуха. Также необходима установка насосов с частотным регулированием их работы. Наиболее эффективной система будет при установке на каждый радиатор отопления датчика регулировки температуры и счетчика учета потребления тепловой энергии.

Разумеется, для этого потребуются денежные средства, которые, по предварительным расчетам, должны окупиться в течение двух лет эксплуатации системы. Можно воспользоваться средствами из федеральной программы повышения эффективности использования энергетических ресурсов, взять кредит и погасить его за счет ежемесячных поступлений денег от жильцов, выделив отдельно графу расходов на реконструкцию системы отопления.

Можно просто «скинуться» и тем самым прекратить выбрасывать собственные деньги в окружающую среду вместе с нерационально используемой тепловой энергией.

Главное, это понять, что существующая сегодня система отопления, особенно в период межсезонья, подобно костру, разведенному на балконе: греет, только не то, что нужно.

Идеальный вариант Идеальным вариантом отопительной системы для потребителя является тепловая сеть, автоматически поддерживающая заданный температурный режим в каждой комнате.

При этом для жильцов мотивацией ее установки и использования должны стать не только комфортные условия проживания (регулировать температуру можно просто, открыв балконную дверь или окно на улицу), но и снижение платы за отопление. Для этого нужна поквартирная система учета потребления тепловой энергии.

Сбытовые компании настаивают, что в нашей стране с ее традиционной вертикальной разводкой системы отопления, установить счетчик тепла на каждую квартиру невозможно, но при этом упускается из виду (или просто нет желания это видеть и принимать во внимание), что счетчики тепла можно установить на каждый радиатор отопления, при этом не меняя двухтрубную или однотрубную вертикальную разводку тепла на горизонтальную. При расчете за тепло достаточно суммировать показания всех счетчиков. С этим справится даже ученик начальной школы. Индивидуальный учет тепловой энергии позволит осознанно экономить тепло, прекращаю его подачу в те помещения, где временно никто не живет или просто предпочитая находиться в прохладной комнате. Для этого можно перекрывать краны, установленные на каждом радиаторе. Но есть и другой способ регулирования расхода тепла: использование радиаторного терморегулятора, состоящего из клапана и термостатической головки. Принцип действия системы прост: движением врезанного в трубу клапана, управляет термостатическая головка, реагирующая на изменение температуры в помещении: жарко, клапан перекрывает трубу, холодно, наоборот, открывает. При этом с помощью ручного регулирования можно настроить устройство по своему желанию: любите, чтобы было жарко, поставьте максимальную температуру на регуляторе, которую хотите получить в помещении. Есть терморегуляторы, с помощью которых можно регулировать температуру в помещении в зависимости от времени суток: днем дома никого нет, отопление можно выключить, вечером включить.

Казалось бы все просто: счетчики можно установить в каждой квартире, количество тепловой энергии можно увеличивать или уменьшать, а плату за отопление можно экономить. Но при этом упускается из виду система регулирования распределения тепловой энергии по всему дому, то есть традиционный элеваторный ввод.

Принцип работы гидроэлеватора В гидроэлеватор подается теплоноситель из магистрального трубопровода. Его давление регулируется с помощью обычной задвижки. При этом температура сетевой воды столь высока, что подавать ее напрямую потребителям нельзя, поэтому сетевую воду в гидроэлеваторе смешивают с уже остывшей обраткой.

Если теплоноситель совершит цикл движения по отопительной системе и при этом не расходует запас тепловой энергии, что произойдет непременно при выключенных отопительных приборах, в элеватор поступит горячая вода из сети и горячая вода из обратного трубопровода. Гидроэлеватор не имеет обратной связи с магистральным трубопроводом и не может уменьшать давление сетевой воды.

В результате потребителям, у которых отопительные приборы не перекрыты и работают на полную мощь, будет направлена слишком горячая вода, что приведет к порче оборудования.

При этом прибор учета тепловой энергии уменьшение потребления тепла не зафиксирует, а сбытовая компания отметит перегрев и выставит штрафные санкции. Выходит, что все усилия по сокращению расходов на отопление предпринимались зря.

Что делать
Нужен тепловой пункт с автоматической системой регулирования подачи сетевой воды

ЭТО ИНТЕРЕСНО:  Как работает газовая горелка

1. Гидроэлеватор2. Электрический привод3. Система управления4. Датчик температуры5. Датчик температуры теплоносителя в подающем трубопроводе

6. Датчик температуры теплоносителя в обратном трубопроводе

В нем используется теплообменник, в котором смешивается сетевая вода и вода из магистрального трубопровода. В отопительную систему подается именно эта «смесь». Ее температура измеряется и при превышении допустимого значения перекрывается подача магистральной воды, что ведет к уменьшению расхода тепловой энергии. В итоге потреблением тепловой энергии можно управлять.

Автоматизированный узел управления системы отопления является разновидностью индивидуального теплового пункта и предназначен для управления параметрами теплоносителя в системе отопления в зависимости от температуры наружного воздуха и условий эксплуатации зданий.

Узел состоит из корректирующего насоса, электронного регулятора температуры, поддерживающего заданный температурный график и регуляторов перепада давления и расхода. А конструктивно — это смонтированные на металлической опорной раме трубопроводные блоки, включающие насос, регулирующую арматуру, элементы электроприводов и автоматики, контрольно-измерительные приборы, фильтры, грязевики.

цену уточняйте по телефону

Быстрый заказ

×

Характеристики

№ тип АУУQ, Гкал/чG, т/чДлина, ммШирина, ммВысота, ммВес, кг
1 0,15 3,8 1730 690 1346 410
2 0,30 7,5 1730 710 1346 420
3 0,45 11,25 2020 750 1385 445
4 0,60 15 2020 750 1425 585
5 0,75 18,75 2020 750 1425 590
6 0,90 22,5 2020 800 1425 595
7 1,05 26,25 2020 800 1425 600
8 1,20 30 2500 950

Источник: https://pobeda-mf.ru/prihozhaya/uzel-upravleniya-teplovoi-energii-uzly-upravleniya-mestnymi-sistemami/

Что такое тепловой ввод МКД?

Одним из основных мероприятий по термомодернизации здания является установка индивидуального теплового пункта (ИТП). Большинство граждан не знает, что представляет собой ИТП, какие функции он выполняет и по каким параметрам его следует выбирать.

Разобраться, для чего надо устанавливать ИТП, как определить какой именно ИТП нужен в конкретном доме и от чего зависит его стоимость, поможет Александр Гут, специалист по развитию проектов термомодернизации в жилом секторе компании «Данфосс ТОВ», Киев.

Что такое индивидуальный тепловой пункт

Как выглядит индивидуальный тепловой пункт

Индивидуальный тепловой пункт или ИТП – это комплекс автоматических устройств, обычно расположен в подвальной части здания и предназначен для того, чтобы присоединить внутридомовые системы теплопотребления – отопления, горячего водоснабжения или вентиляции – к тепловой сети.

Немного поясним, как работает централизованное отопление. Теплоноситель, то есть подогретая вода, от центральной котельной (ЦК) по магистральной теплотрассе поступает в центральные тепловые пункты (ЦТП), которые также называют бойлерными.

Далее от ЦТП теплоноситель распределяется по зданиям жилого района по трубопроводам.

Центральный тепловой пункт также обычно является местом приготовления горячей воды для окружающего микрорайона, поэтому от ЦТП до каждого дома идет по четыре трубопровода: два для отопления и два для горячего водоснабжения.

Центральная котельная обслуживает десятки домов, которые в принципе должна отапливать все одинаково.

Однако все эти дома находятся на разном расстоянии от котельной, различаются по тепловой нагрузке и имеют разные теплотехнические свойства, обусловленные в том числе и сроком их эксплуатации.

В таких системах регулирования качества теплоносителя – его температуры и давления – возможно только посредством регулирования температуры или напора теплоносителя в центральной котельной, а для текущих потребностей каждого отдельного дома – невозможно.

Установление индивидуального теплового пункта на входе теплоносителя в жилой дом дает возможность регулировать подачу тепла в конкретном здании и управлять интенсивностью подачи тепла в зависимости от погодных условий.

Какие функции выполняет индивидуальный тепловой пункт

Индивидуальный тепловой пункт в подвале здания

Одна из основных функций ИТП – это автоматическое регулирование теплового потока, то есть корректировки количества горячего теплоносителя, поступающего из теплосети, для обеспечения определенной температуры теплоносителя на входе в систему отопления дома в зависимости от текущей температуры наружного воздуха.

Погодозависимое регулирование дает возможность экономить количество потребленной тепловой энергии.

Иными словами, если на улице тепло, то регулятор теплового потока в индивидуальном тепловом пункте снижает температуру теплоносителя, циркулирующего в системе отопления, для обеспечения комфортной температуры воздуха в отапливаемых помещениях, а если холодно – повышает ее, согласно заданным настройками.

В состав регулятора теплового потока системы отопления входят:

  • электронный регулятор с подключенными температурными датчиками (как минимум – наружного воздуха и температуры теплоносителя, поступающего в систему отопления), который управляет;
  • регулировочный клапан с электроприводом для обеспечения необходимого количества греющего теплоносителя из тепловой сети, который поступает во внутреннюю систему отопления для компенсации теплопотерь в здании в зависимости от наружной температуры.

Все это оборудование должно работать исключительно в автоматическом режиме, поэтому критически важно правильное налаживание всего комплекса оборудования для работы в конкретном доме.

В зависимости от комплектации ИТП может управлять системой отопления или системой горячего водоснабжения в доме, а также управлять обеими системами одновременно.

Если ИТП устанавливается только для управления системой отопления дома, то в перечень его основного оборудования входят регулирующий клапан с электроприводом, электронный регулятор температуры с погодным регулированием с датчиками температуры, автоматический регулятор перепада давления, два циркуляционных насоса и соответствующая запорная арматура.

В составе ИТП, который также управляет системой горячего водоснабжения дома, прежде всего необходим теплообменник, в котором, собственно, происходит подогрев воды из водопровода до необходимой температуры, также регулирующий клапан с электроприводом, которым управляет электронный регулятор температуры или автоматический регулятор температуры прямого действия, а также автоматический регулятор перепада давления и два циркуляционных насоса.

Кроме того, в комплектацию ИТП могут входить дополнительные насосы на подкачку, например, холодной воды, и дополнительные автоматические регуляторы давления теплоносителя.

Как определить, какой ИТП нужно установить

В зависимости от поставленных перед тепловым пунктом задач и исходных данных о здании, специалист определяет, какое оборудование войдет в комплекс ИТП в конкретном доме. Проектировочная компания проведет аудит здания и порекомендует надлежащую комплектацию индивидуального теплового пункта.

Это может быть и достаточно простой ИТП с минимальной комплектацией оборудования.

Но следует учесть, что современные индивидуальные тепловые пункты содержат современную автоматическую систему управления, которая требует ответственного выбора, поэтому его комплектацией должны заниматься только опытные профессионалы.

Если обобщить, то варианты конструкций ИТП могут быть различными и зависеть от многих факторов и именно поэтому первое слово в аббревиатуре «ИТП» – это «индивидуальный», то есть предназначен именно для конкретного дома, который присоединен к конкретной тепловой сети в конкретном месте.

От каких факторов зависит стоимость ИТП

Источник: https://gscomplect.com/chto-takoe-teplovoy-vvod-mkd/

Тепловой узел. Узел учета тепловой энергии. Схемы тепловых узлов

Тепловой узел (ТУ) — это целый комплекс взаимосвязанных между собой приборов и оборудования, предназначенный для учета поставляемого и потребляемого тепла, измерения, регистрации и мониторинга текущих показателей теплоносителя (воды) в системе отопления дома, а также выполнения ряда иных функций.
ТУ подключается к трубам системы домашнего отопления в месте их входа от внешней тепловой магистрали.

Назначение теплового узла

ТУ предназначается для выполнения целого ряда задач:

  • контроль использования теплоносителя (воды) и отдаваемого им тепла;
  • контроль систем потребления тепла;
  • постоянная фиксация и передача поставщику текущих показателей теплоносителя;
  • организация правильных расчетов между потребителем и поставщиком тепла.

Основные элементы теплового узла

ТУ — это технически достаточно сложный агрегат, способный одновременно выполнять несколько функций, а именно: — хранить, накапливать, измерять, отображать сведения об объеме, давлении и температуре теплоносителя (воды), количестве передаваемого им тепла и др.

Прибором учета в ТУ является счетчик тепла, который может быть также доукомплектован иными датчиками. В таких счетчиках могут применяться четыре способа измерения:

  • вихревое;
  • ультразвуковое;
  • электромагнитное;
  • тахометрическое.

Функции счетчика тепла

Счетчик тепла выполняет сразу несколько функций.

  • Автоматически производит измерение:
    • избыточности давления находящейся в системе воды;
    • температуры и расходования воды в системе водоснабжения;
    • длительности работы при заданном напряжении и многое другое.
  • Автоматически производит вычисление
    • размера потребленного тепла;
    • объема воды, проходящей через систему труб;
    • мощности потребляемого тепла;
    • разности температуры теплоносителя (воды), циркулирующего в обогреваемом помещении в трубе подачи и в обратной трубе.

Что такое запорная арматура и грязевик?

Запорная арматура предназначена для ограничения, отключения отопительной системы дома от внешней тепловой сети.
Грязевик защищает счетчик тепла и отопительную систему внутри дома от грязи, которая имеется в теплоносителе (воде), поступающей извне. Вся грязь из внешних сетей оседает в грязевике и не проходит в отопительную систему дома. Периодически его нужно чистить, что делает обслуживающая дом сантехническая компания.

Преобразователь тепла

Этот прибор монтируется в тепловой узел сразу после запора и грязевика в гильзу, заполненную маслом. Она крепится к трубе с помощью резьбы либо посредством сварки.

Расходомер

Этот прибор устанавливается в тепловой узел и исполняет функцию замера расхода тепла. Поступающий в дом теплоноситель (вода) проходит через расходомер, затем обходит по кругу всю систему труб домашнего отопления, отдает свое тепло комнаты, охлаждается и выходит по обратной трубе из дома. Расходомер занимается замером израсходованного теплоносителем тепла.

Термодатчик

Этот прибор устанавливается на обратной трубе, по которой охладившийся теплоноситель (вода) выходит из дома. Функция его заключается в измерении температуры циркулирующей внутри дома по трубам воды, а также ее расходовании.

Расходомер и термодатчик подсоединяются к счетчику тепла и позволяют осуществлять размеры потребленной энергии, хранить эти данные, регистрировать основные параметры домашней тепловой сети и отражать их визуально на счетчике.

В тепловом узле также имеются приборы, позволяющие передавать полученные данные дистанционно поставщику тепла для контроля и выставления счетов, и ряд других устройств.

Схемы систем отопления

Чтобы понять схемы ТУ, прежде всего, нужно иметь общее представление о том, какие используются схемы систем отопления внутри дома.

  1. Верхняя разводка.
    Самая популярная и востребованная сегодня отопительная схема — это верхняя разводка. В соответствии с этой конструкцией теплоноситель (вода) проходит через главный стояк, располагающийся в верхней части дома, как правило, на чердаке дома, и движется вниз по разветвленной системе труб в более мелкие стояки, откуда попадает непосредственно в нагревательные приборы (радиаторы, конвекторы, теплые полы и прочее). Эта схема идеально подходит для одноэтажных домов.
  2. Нижняя разводка
    В схеме отопления с нижней разводкой ТУ располагается в нижней части дома, т.е. в подвале. Оттуда в дом выходит труба с движущимся по ней теплоносителем (водой), который с помощью системы насосов продвигается к отопительным приборам.

Схемы тепловых узлов

Самые известные схемы ТУ следующие.

  1. Параллельное одноступенчатое подключение горячего водоснабжения. Это самая популярная и простая схема. В соответствии с ней горячая вода параллельно с отоплением подключается от внешней тепловой сети. Теплоноситель (вода) подается извне в тепловой пункт, в котором установлен подогреватель, а затем, пройдя в доме по замкнутому кругу, охлажденная выходит из дома.

    Недостатком этой схемы считается большое расходование воды из внешней тепловой сети для обеспечения жильцов дома ГВ.

  2. Последовательное двухступенчатое подключение горячего водоснабжения В этой схеме имеются две ступени, первая подключается к обратной трубе, а вторая — к входящей, подающей трубе отопления.

    Главным преимуществом такой схемы считается значительное сокращение расходования воды из внешней тепловой сети. Недостаток в том, что в эту схему необходимо обязательно монтировать автоматическую систему регулирования распределения тепла.

  3. Смешанное двухступенчатое подключение подогревателя горячего водоснабжения.
    Это самая приемлемая и удобная схема, при которой теплообменник последовательно подключается к подающей трубе. В остальном эта схема схожа со второй.

Как устанавливается узел учета тепла?

Перед установкой теплового узла нужно обследовать объект и разработать проектную документацию. Специалисты, занимающиеся проектированием систем отопления, произведут все необходимые расчеты и подберут все КИП и иное оборудование для конкретного узла. Далее в соответствии с действующими правилами проходятся все согласования с поставщиком тепла, после чего осуществляются технические работы по установке теплового узла.

Этапы установки узла следующие:

  • установка запорных устройств;
  • подключение датчиков, расходомеров;
  • запуск вычислителя;
  • отладка прибора учета тепла и прочее.

Установка закачивается сдачей объекта и постановкой его на учет. Для объединения в дальнейшем тепловых узлов нескольких потребителей поставщику нужно будет организовать общий мониторинг и контроль информации, поступающих с их счетчиков тепла. Чтобы ТУ был введен в эксплуатацию, заводской номер счетчика тепла должен соответствовать проектной документации, также необходимо проверить наличие пломб, качество монтажа и прочее.

Тепловой узел запрещается эксплуатировать:

  • при наличии непредусмотренных проектной документацией врезок в трубу;
  • при наличии повреждений на приборах и ином оборудовании;
  • при нарушении пломб;
  • при несанкционированном вмешательстве в функционирование узла и в ряде других случаев.

Источник: https://tesco-mos.ru/news-12/

Устройство теплового узла отопления

Тепловой пункт отопительной системы – это место, где магистраль поставщика горячей воды соединяется с системой отопления жилого дома, а также производится подсчет потребленной тепловой энергии.

Основные типы тепловых пунктов

Узлы подключения системы к источнику тепловой энергии бывают двух типов:

  1. Одноконтурные;
  2. Двухконтурные.

Одноконтурный тепловой пункт – это наиболее распространенный тип подключения потребителя к источнику тепловой энергии. В этом случае для системы отопления дома используется непосредственное соединение с магистралью горячего водоснабжения.

Одноконтурный тепловой пункт имеет одну характерную деталь – его схема предусматривает трубопровод, соединяющий прямую и обратную магистрали, который называется элеватор. Назначение элеватора в системе отопления стоит рассмотреть подробнее.

У котельных системы отопления есть три стандартных режима работы, различающихся температурой теплоносителя (прямого/обратного):

  • 150/70;
  • 130/70;
  • 90–95/70.

Использование перегретого пара в качестве теплоносителя для системы отопления жилого дома не допускается. Поэтому, если по погодным условиям котельная поставляет горячую воду температурой в 150 °C, ее требуется охладить перед подачей в стояки отопления жилого дома. Для этого используется элеватор, через который «обратка» попадает в прямую магистраль.

Элеватор открывается ручным или электрическим (автоматическим) приводом. В его магистраль может быть включен дополнительный циркуляционный насос, но обычно это устройство делают особой формы – с участком резкого сужения магистрали, после которой идет конусообразное расширение. За счет этого оно работает как инжекторный насос, закачивая воду из обратки.

Двухконтурный тепловой пункт

В этом случае теплоносители двух контуров системы не смешиваются. Для передачи тепла от одного контура другому используется теплообменник, обычно пластинчатый. Схема двухконтурного теплового пункта приведена ниже.

Пластинчатый теплообменник – это устройство, состоящее из ряда полых пластин, по одним из которых прокачивается нагревающая жидкость, а по другим – нагреваемая. У них очень высокий коэффициент полезного действия, они надежны и неприхотливы. Количество отбираемого тепла регулируется изменением числа взаимодействующих друг с другом пластин, поэтому забор охлажденной воды из обратной магистрали не требуется.

Как оборудовать тепловой пункт

H2_2

Для организации теплоснабжения жилого дома тепловые пункты оснащаются следующим дополнительным оборудованием:

  1. Задвижками и вентилями;
  2. Фильтрами-грязеуловителями;
  3. Приборами контроля и учета – термометрами, манометрами, расходомерами;
  4. Вспомогательными насосами.

Состав оборудования одноконтурного пункта отопления приведен на рисунке. 

Цифрами здесь обозначены следующие узлы и элементы:

  • 1 — трехходовый кран;
  • 2 — задвижка;
  • 3 — пробковый кран;
  • 4, 12 — грязевики;
  • 5 — обратный клапан;
  • 6 — дроссельная шайба;
  • 7 — V—штуцер для термометра;
  • 8 — термометр;
  • 9 — манометр;
  • 10 — элеватор;
  • 11 — тепломер;
  • 13 — водомер;
  • 14 — регулятор расхода воды;
  • 15 — регулятор подпара;
  • 16 — вентили;
  • 17 — обводная линия.
ЭТО ИНТЕРЕСНО:  Как спустить воздух из системы теплого пола

Установка приборов теплового учета

Пункт приборов теплового учета включает:

  • Термодатчики (устанавливаются в прямую и обратную магистрали);
  • Расходомеры;
  • Тепловычислитель.

Приборы теплового учета устанавливаются как можно ближе к ведомственной границе, чтобы предприятие-поставщик не высчитывало теплопотери по некорректным методикам. Лучше всего, чтобы тепловые узлы и расходомеры имели на своих входах и выходах задвижки или вентили, тогда их ремонт и профилактика не будут вызывать трудностей.

Совет! Перед расходомером должен быть участок магистрали без изменения диаметров, дополнительных врезок и устройств, чтобы уменьшить турбулентность потока. Это увеличит точность измерения и упростит работу узла.

Тепловой вычислитель, получающий данные от термодатчиков и расходомеров, устанавливается в отдельном запирающемся шкафу. Современные модели этого устройства оборудованы модемами и могут соединяться по каналам Wi-Fi и Bluetooth в локальную сеть, предоставляя возможность получать данные дистанционно, без личного визита на узлы теплового учета.

Источник: http://domotopim.ru/obsluzhivanie-otopleniya/proektirovanie-i-montazh/teplovoy-uzel-otopleniya.html

Тепловой узел учета энергии (отопления): что это? Схема, установка

Построение правильного проекта монтажа представленного оборудования важно для поддержания нормальной температуры отопления в каждом полезном помещении многоквартирного дома без необходимости жильцам подключать автономную систему нагрева.

Регулярная проверка полученных данных, полученных от описанной аппаратуры позволяет устранить возможные недостатки построенной ранее схемы отопления или ее поломки.

Что такое тепловой узел учета энергии?

Тепловой узел – комплекс оборудования, монтаж проекта которых обеспечивается с целью предоставления принципиального учета и регулирования энергии, объема теплоносителя, а также произведение регистрации и контроля его параметров.

Тепловой узел учета энергии

Узел учета тепловой энергии – автоматический модуль, монтаж которого производится к системе трубопроводов для предоставления учетных данных по проекту эксплуатации и регулирования отопительных ресурсов.

к меню

Где устанавливаются тепловые узлы?

Установка тепловых узлов и их обслуживание, как правило, производится в типовые многоквартирные дома, с коммунальными системами отопления.

В свою очередь, узлы учета тепловой энергии устанавливаются в многоквартирном доме для выполнения следующих задач:

  • проверки и регулирования эксплуатации теплоносителя и тепловой энергии;
  • проверки и регулирования гидравлических и отопительных систем;
  • записи данных теплоносителя, таких как температура, давление и объем.
  • произведение денежного расчета потребителя и поставщика тепловой энергии, после того как будет осуществлена проверка полученных данных.Монтаж узлов учета тепловой энергии

При осуществлении установки проекта отопительного оборудования следует учесть, что потребление ресурсов, подаваемых в центральное отопление в многоквартирном доме несет за собой определенные финансовые затраты пользователей (в данном случае – жильцов многоквартирного дома).

Снизить расходы, как и поддерживать работоспособность построенного узла по проектированной ранее схеме продолжительное время, квартирный дом сможет, если будут своевременно будет предоставляться грамотная проверка учетного оборудования и его обслуживание, включая качественный монтаж аппаратуры и трубопровода.

к меню

Устройство и схема теплового узла

Тепловой узел, монтаж которого обеспечивается по предварительному проекту в коммунальные системы многоквартирных домов, изготавливается из целого комплекса оборудования и приборов. Такое устройство способно выполнять от одной до нескольких функций, таких как:

  1. Измерение количества и массы тепловой энергии, ее давления, температуры жидкости, циркулирующей по трубопроводу и времени функционирования.
  2. Накопление и хранение этой информации на локальном носителе.
  3. Отображение ее на приборах учета.

На основе полученных данных осуществляется проверка за работой отопительного оборудования в многоквартирных домах, его регулирование и обслуживание.

Учетным прибором выступает такое устройство, как счетчик, схема которого состоит из:

  1. Термопреобразователя сопротивлений.
  2. Тепловычислителя.
  3. Первичного преобразователя расхода.

Зависимо от того, установка какой модели первичного преобразователя имела место (с вихревым, ультразвуковым, электромагнитным или тахометрическим вариантами измерения), теплосчетчик может иметь в своем составе фильтры и датчики давления.

Принципиальная схема теплового узла

Узел учета тепловой энергии состоит из следующих элементов:

  1. Запорной арматуры.
  2. Теплового счетчика.
  3. Термопреобразователя.
  4. Грязевика.
  5. Расходомера.
  6. Теплового датчика обратного трубопровода.
  7. Дополнительного оборудования.

Монтаж схемы учетного оборудования тепловой энергии в квартирный дом, в свою очередь, подразумевает следующие принципиальные требования:

  • необходимость производить монтаж схемы учетного оборудования исключительно у границ раздела балансовой принадлежности трубопроводах в местах, наиболее приближенных к основным задвижкам источника отопления;
  • запрет на организации проекта отбора теплоносителя на личные нужды в системе коммунального теплоснабжения;
  • регулирования среднечасовых и среднесуточных параметров теплоносителя производятся по показаниям учетного оборудования;
  • учетные прибора монтируются на обратных трубопроводах магистралей и размещаются до места подсоединения подбиточного трубопровода.

Для осуществления грамотного регулирования и контроля за описываемым оборудованием компетентными службами осуществляется грамотная проверка их монтажа и функционирования.

к меню

Кто устанавливает и обслуживает тепловой узел в квартирных домах?

В многоквартирных зданиях работает центральное отопление (ТС) и горячее водоснабжение (ГВС), магистральный трубопровод для подачи которых располагается в подвалах, оснащая его запорной арматурой. Последняя позволяет отключать внутридомовую систему подачи отопления от внешней сети.

Сам тепловой узел оснащается грязевиками, запорной арматурой, контрольно-измерительными приборами и имеет в конструкции такое устройство, как элеватор. Из них постоянного обслуживания требует, как правило, грязевик, которые представляет собой стальную трубу диаметром Ду=159-200мм и необходим для сбора грязи, поступающей из магистрального трубопровода для защиты трубопроводов и отопительных приборов от загрязнения.

Установка термо-узла, его обслуживание, в том числе очистка – работа слесарей обслуживающих жилой дом, выполняя требования организации, предоставляющей жилищно-коммунальные услуги.

к меню

Тепловой узел учета энергии (видео)

Портал об отоплении » Водяное отопление

Источник: http://stroypotencial.ru/vodyanoe-otoplenie/teplovoj-uzel.html

Принцип работы теплового пункта (ИТП)

* Пояснения условных графических обозначений на схеме ИТП

В тепловом пункте подключённом по независимой схеме гидравлический контур системы отопления отделён от гидравлического контура источника тепла теплообменным аппаратом. Теплоноситель циркулирующий в системе отопления контактирует с горячей водой поступающей от источника тепла только через теплообменные поверхности, не смешиваясь.

Управляет работой теплового пункта электронный программируемый контроллер, оснащённый датчиком температуры наружного воздуха, датчиком температуры теплоносителя поступающего в систему отопления и регулирующим клапаном с электрическим приводом способным частично или полностью перекрыть подачу теплоносителя на вводе от источника.

В контроллер вносится таблица зависимости температуры воды поступающей в систему отопления от температуры наружного воздуха, называемая температурным графиком. Программе можно задать температуру снижения на которую контроллер понизит температуру теплоносителя по температурному графику в зависимости от дня недели и времени суток, что часто используется зданиями с фиксированным графиком эксплуатации, например, школами, офисными и производственными помещениями.

Контроллер с определённой периодичностью замеряет температуру наружного воздуха, определяет соответствующую ей температуру теплоносителя на входе в систему отопления и сравнивает с фактическим значением этой температуры по сигналу соответствующего датчика.

Если температура воды поступающей в систему отопления превышает заданную – контроллер подаёт управляющий сигнал электрическому приводу на закрытие регулирующего клапана и перекрывает подачу греющего теплоносителя к теплообменному аппарату.

Если температура ниже заданной – на привод регулирующего клапана идёт открывающий сигнал.

Если поток греющего теплоносителя перекрыт полностью, вода отобранная из обратного трубопровода системы отопления проходит через теплообменник не нагреваясь и с той же температурой поступает назад в систему. Чем сильнее открыт регулирующий клапан, тем больше греющего теплоносителя поступает в теплообменник и тем сильнее нагревается теплоноситель поступающий в систему отопления.

Циркуляцию в контуре системы отопления обеспечивают два циркуляционных насоса один из которых резервный.

На вводе тепловой сети перед регулирующим клапаном установлен регулятор перепада давления стабилизирующий располагаемый напор на вводе и используемый для ограничения расхода теплоносителя.

Прирост объёма воды образующийся при её нагреве в замкнутом контуре системы отопления принимают расширительные баки, которые при последующем охлаждении вернут саккумулированную во время нагрева воду — назад в систему.

Для защиты системы отопления и оборудования теплового пункта от превышения давления выше допустимых значений — в ИТП предусматривается установка предохранительного клапана.

Заполнение и подпитка замкнутого контура системы отопления в случае утечки осуществляется через подпиточную линию в ручном или автоматическом режиме. Если давление на вводе от источника тепла достаточно для заполнения системы – на линии подпитки применяют соленоидный клапан или регулятор давления «после себя», а в случае недостаточного давления на вводе – блок подпиточных насосов.

Преимущества независимого подключения ИТП:

1 Защитит систему отопления от высокого давления на вводе тепловых сетей источника тепла.

2 Позволит создать желаемый гидравлический режим в контуре системы отопления.

3 Исключит опустошение системы отопления при дренировании трубопроводов источника тепла и при низком давлении на вводе.

4 Обеспечит защиту элементов системы отопления от шлама поступающего с потоком теплоносителя от источника тепла.

Недостатки независимых схем подключения ИТП

1 Температура теплоносителя поступающего в систему отопления всегда будет, как минимум на 10°C ниже температуры теплоносителя пришедшего из тепловой сети. В скоростном теплообменном аппарате, температура нагреваемой воды не может достичь температуры греющей.

2 Более высокая стоимость блочного теплового пункта с независимым подключением превышающая стоимость модульного ИТП аналогичной мощности, но с зависимым подключением примерно в 2-2,5 раза.

3 Давление в системе отопления колеблется при нагреве и охлаждении теплоносителя. При минимальной (расчётной) температуре наружного воздуха – давление в системе отопления, достигает принятого при расчёте максимального значения, а в тёплые дни отопительного периода – соответственно – минимального давления, которое равно статическому давлению системы отопления с небольшим избытком.

4 Более сложный пуск, настройка и техническое обслуживание, по сравнению с тепловыми пунктами подключёнными по зависимой схеме.

5 Циркуляция воды в системе отопления прекратится в случае обесточивания насосов.

Виды независимых схем подключения теплового пункта и в каких случаях применяются.

Работа теплового пункта подключенного по зависимой схеме

* Пояснения условных графических обозначений на схеме ИТП

Работой теплового пункта управляет программируемый контроллер к которому подключены электропривод клапана влияющего на отбор теплоносителя из тепловой сети, датчик температуры наружного воздуха и датчик температуры теплоносителя поступающего в систему отопления.

В контроллер вносится зависимость температуры теплоносителя на входе в систему отопления от температуры наружного воздуха, дня недели и времени суток. Контроллер с определённой периодичностью замеряет температуру наружного воздуха и сравнивает фактически замеренную температуру теплоносителя с заданным для текущих условий значением. Если температура ниже заданной – на регулирующий клапана поступает открывающий сигнал, а если выше – закрывающий.

В подающий трубопровод системы отопления поступает смесь двух потоков теплоносителя. Один поток «горячий» поступает из подающего трубопровода тепловой сети пропущенный регулятором, а второй поток «охлаждённый» подмешивается через перемычку из обратного трубопровода.

Независимо от того открыт регулирующий клапан, или закрыт – в системе циркулирует постоянный объёмный расход теплоносителя, а от степени закрытия зависит лишь пропорции «горячего» и «холодного» потоков в этом объёме. То есть, если отбор из тепловой сети полностью перекрыт – в систему будет поступать только вода отобранная из обратного трубопровода, через перемычку.

Стабильную циркуляцию в системе отопления и смешение создают два бесшумных насоса с мокрым ротором, один из которых всегда работает, а второй находится в резерве на случай выхода из строя рабочего.

Преимущества зависимого подключения ИТП

1 Более низкая по сравнению с независимым подключением стоимость блока.

2 Возможность автоматического программного управления режимом работы системы отопления.

3 Давление в системе отопления стабильно и равно давлению в обратном трубопроводе источника тепла.

4 Простой пуск и настройка модуля теплового пункта.

5 Возможность подать в систему теплоноситель с температурой равной температуре теплоносителя в подающем трубопроводе тепловой сети (только в случае применения трёхходового клапана).

Недостатки зависимого подключения ИТП

1 Система отопления опустошится в случае дренажа теплотрассы.

2 Циркуляция воды в системе отопления прекратится в случае обесточивания насосов.

Виды независимых схем подключения теплового пункта и в каких случаях применяются.

Как работает тепловой пункт с элеваторным узлом смешения

Элеваторные узлы смешения устанавливают в тепловых пунктах зданий, которые подключены к тепловой сети работающей в режиме с качественным регулированием на «перегретой» воде.

Качественное регулирование предполагает изменение температуры воды поступающей в систему отопления в зависимости от температуры наружного воздуха, при постоянном расходе воды циркулирующей в ней.

«Перегретой» вода считается, если она поступает из тепловой сети с температурой, превышающей необходимую для подачи в систему отопления.

Например, тепловая сеть может работать по графику 150/70, 130/70 или 110/70, а система отопления рассчитана на график 95/70. Температурный график 150/70 предполагает, что при расчётной температуре наружного воздуха (для Киева это -22°С) температура на вводе тепловых сетей в дом должна быть равной 150°C, а уйти в тепловую сеть должна с температурой 70°C, при этом в дом рассчитанный на график 95/70 эта вода должна попасть с температурой 95°C.

Элеваторный узел смешивает поток воды из подачи тепловой сети с температурой 150°C и поток воды вышедший из системы отопления с температурой 70°C, — в результате смешения на выходе из элеватора получается поток с температурой 95°C, который подаётся в систему отопления.

Как происходит смешение

В камере смешения элеваторного узла расположен конфузор «сопло / конус» разгоняющий поток перегретой воды. При повышении скорости потока давление в нём понижается (это свойство описано законом Бернулли) на столько, что становится несколько ниже давления в обратном трубопроводе. Разница давлений между камерой смешения и обратным трубопроводом приводит к перетеканию теплоносителя через перемычку «сапог элеватора» из обрата в подачу.

В камере смешения образуется смесь двух потоков с уже требуемой температурой, но давлением ниже давления обратного трубопровода. Смесь поступает в диффузор элеватора, в котором скорость потока понижается, а давление повышается над давлением обратного трубопровода. Повышение давления составляет не более 1,5 м.вод.ст, что и накладывает на элеваторные узлы ограничения в применении для систем отопления с высоким гидравлическим сопротивлением.

Достоинства тепловых пунктов с элеваторными узлами

1 Дешёвый и простой

2 Не требует обслуживания

3 Не зависит от электрической сети

Недостатки элеваторных узлов смешения

1 Не совместим с автоматическими регуляторами, поэтому нормативно запрещена их совместная установка.

2 Создаёт располагаемый напор на вводе в систему отопления не более 1,5м.вод.ст., что исключает установку элеваторных тепловых пунктов в зданиях системы отопления которых оборудованы радиаторными термостатическими клапанами.

3 Элеваторный узел обладает постоянным коэффициентом смешения, что не позволяет подать в систему отопления теплоноситель необходимой температуры, при недогреве в тепловой сети.

4 Слишком высокая чувствительность к располагаемому напору на вводе тепловой сети. Снижение располагаемого напора относительно расчётного значения ведёт к снижению объёмного расхода воды циркулирующего в системе отопления, что в свою очередь приводит к разбалансировке системы и останове дальних стояков/ветвей.

5 Для работы элеватора разница давлений между подающим и обратным трубопроводом должна превышать 15 м.вод.ст.

Где установлены тепловые пункты с элеваторными узлами?

Практически все системы отопления введённые в эксплуатацию до 2000 года оборудованы тепловыми пунктами с элеваторными узлами.

Где можно применять элеваторные ИТП?

В настоящее время для всех проектируемых и реконструируемых жилых и административных зданий, обязательно применение автоматического регулирования в тепловом пункте. Применение же элеваторных узлов совместно с автоматическими регуляторами запрещено нормативно.

Элеваторные узлы могут устанавливаться лишь на объектах где нет необходимости в автоматическом управлении системой отопления, располагаемый напор (разница давлений между подающим и обратным трубопроводом) на вводе стабилен и превышает 15 м.вод.ст, для работы подключённой системы отопления достаточно перепада давлений между подачей и обратом в 1,5м.вод.ст, а система отопления работает с постоянным расходом и не оборудована автоматическими регуляторами.

Пластинчатые
теплообменники

Регулирующие
клапаны муфтовые

Источник: http://www.ktto.com.ua/princip/itp

Понравилась статья? Поделиться с друзьями:
Погода в доме
Как увлажнить воздух в квартире с помощью вентилятора

Закрыть